Perceptual Hashing for Color Images Using Invariant Moments
نویسندگان
چکیده
Image hashing is a new technology in multimedia security. It maps visually identical images to the same or similar short strings called image hashes, and finds applications in image retrieval, image authentication, digital watermarking, image indexing, and image copy detection. This paper presents a perceptual hashing for color images. The input image in RGB color space is firstly converted into a normalized image by interpolation and filtering. Color space conversions from RGB to YCbCr and HSI are then performed. Next, invariant moments of each component of the above two color spaces are calculated. The image hash is finally obtained by concatenating the invariant moments of these components. Similarity between image hashes is evaluated by L2 norm. Experiments show that the proposed hashing is robust against normal digital processing, such as JPEG compression, watermark embedding, gamma correction, Gaussian low-pass filtering, adjustments of brightness and contrast, image scaling, and image rotation. Receiver operating characteristics (ROC) comparisons between the proposed hashing and singular value decompositions (SVD) based hashing, also called SVD-SVD hashing, presented by Kozat et al. at the 11th International Conference on Image Processing (ICIP’04) are conducted, and the results indicate that the proposed hashing shows better performances in robustness and discriminative capability than the SVD-SVD hashing.
منابع مشابه
Image authentication using LBP-based perceptual image hashing
Feature extraction is a main step in all perceptual image hashing schemes in which robust features will led to better results in perceptual robustness. Simplicity, discriminative power, computational efficiency and robustness to illumination changes are counted as distinguished properties of Local Binary Pattern features. In this paper, we investigate the use of local binary patterns for percep...
متن کاملAutomated Color Logo Recognition System based on Shape and Color Features
This paper proposes an automated system for rotation and scale invariant color logo recognition. Colored logo images are recognized using one shape feature namely Moments Invariant and a color feature namely Color Moments. Shape of the logo is modeled using the first two central normalized Hu's invariant moments while color is modeled using the mean, standard deviation, skewness and kurtos...
متن کاملPseudo Zernike Moment-based Multi-frame Super Resolution
The goal of multi-frame Super Resolution (SR) is to fuse multiple Low Resolution (LR) images to produce one High Resolution (HR) image. The major challenge of classic SR approaches is accurate motion estimation between the frames. To handle this challenge, fuzzy motion estimation method has been proposed that replaces value of each pixel using the weighted averaging all its neighboring pixels i...
متن کاملRobust Image Hashing Using Radon Transform and Invariant Features
A robust image hashing method based on radon transform and invariant features is proposed for image authentication, image retrieval, and image detection. Specifically, an input image is firstly converted into a counterpart with a normalized size. Then the invariant centroid algorithm is applied to obtain the invariant feature point and the surrounding circular area, and the radon transform is e...
متن کاملCompressed Image Hashing using Minimum Magnitude CSLBP
Image hashing allows compression, enhancement or other signal processing operations on digital images which are usually acceptable manipulations. Whereas, cryptographic hash functions are very sensitive to even single bit changes in image. Image hashing is a sum of important quality features in quantized form. In this paper, we proposed a novel image hashing algorithm for authentication which i...
متن کامل